5 resultados para Cellulase

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of a commercial cellulase preparation on phenol liberation and extraction from black currant pomace was studied. The enzyme used, which was from Trichoderma spp., was an effective "cellulase-hemicellulase" blend with low P-glucosidase activity and various side activities. Enzyme treatment significantly increased plant cell wall polysaccharide degradation as well as increasing the availability of phenols for subsequent methanolic extraction. The release of anthocyanins and other phenols was dependent on reaction parameters, including enzyme dosage, temperature, and time. At 50 degrees C, anthocyanin yields following extraction increased by 44% after 3 h and by 60% after 1.5 h for the lower and higher enzyme/substrate ratio (E/S), respectively. Phenolic acids were more easily released in the hydrolytic mixture (supernatant) and, although a short hydrolysis time was adequate to release hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCA) required longer times. The highest E/S value of 0.16 gave a significant increase of flavonol yields in all samples. The antioxidant capacity of extracts, assessed by scavenging of 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation, the oxygen radical absorbance capacity, and the ferric reducing antioxidant potential depended on the concentration and composition of the phenols present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of in vitro studies was, conducted to determine the effects of adding a commercial enzyme product on the hydrolysis and fermentation of cellulose, xylan, and a mixture (1:1 wt/wt) of both. The enzyme product (Liquicell 2500, Specialty Enzymes and Biochemicals, Fresno, CA) was derived from Trichoderma reesei and contained mainly xylanase and cellulase activities. Addition of enzyme (0.5, 2.55 and 5.1 muL/g of DM) in the absence of ruminal fluid increased (P < 0.001) the release of reducing sugars from xylan and the mixture after 20 h of incubation at 20degreesC. Incubations with ruminal fluid showed that enzyme (0.5 and 2.55 muL/g of DM) increased (P < 0.05) the initial (up to 6 h) xylanase, endoglucanase, and beta-D-glucosidase activities in the liquid fraction by an average of 85%. Xylanase and endoglucanase activities in the solid fraction also were increased (P < 0.05) by enzyme addition, indicating an increase in fibrolytic activity due to ruminal microbes. Gas production over 96 h of incubation was determined using a gas pressure measurement technique. Incremental levels of enzyme increased (P < 0.05) the rate of gas production of all substrates, suggesting that fermentation of cellulose and xylan was enzyme-limited. However, adding the enzyme at levels higher than 2.55 muL/g of DM failed to further increase the rate of gas production, indicating that the maximal level of stimulation was already achieved at lower enzyme concentrations. It was concluded that enzymes enhanced the fermentation of cellulose and xylan by a combination of pre- and postincubation effects (i.e., an increase in the release of reducing sugars during the pretreatment phase and an increase in the hydrolytic activity of the liquid and solid fractions of the ruminal fluid), which was reflected in a higher rate of fermentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several tissue types of Lupinus albus L. were investigated as sources for the isolation of protoplasts. Cotyledons from in vitro seedlings were found to yield the highest number of protoplasts compared with leaves, hypocotyls and roots. A combination of the protoplast isolation enzymes, cellulase and Pectolyase Y23, was capable of releasing the highest number of protoplasts compared with a combination of cellulase and Macerase. Protoplast yield increased with increasing cotyledon age but was accompanied by a progressive decline in protoplast viability. The optimal combination of protoplast yield and viability occurred when the protoplasts were isolated from 14- to 18-day-old cotyledons. The ratio between the volume of enzyme solution and the tissue biomass did not affect the protoplast production significantly. This is the first report of the isolation of protoplasts from a lupin cotyledon and, following the procedure described in this paper, an average yield of 1.2 x 10(6) protoplasts per gram of fresh tissue was obtainable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The utility of plant secondary cell wall biomass for industrial and biofuel purposes depends upon improving cellulose amount, availability and extractability. The possibility of engineering such biomass requires much more knowledge of the genes and proteins involved in the synthesis, modification and assembly of cellulose, lignin and xylans. Proteomic data are essential to aid gene annotation and understanding of polymer biosynthesis. Comparative proteomes were determined for secondary walls of stem xylem and transgenic xylogenic cells of tobacco and detected peroxidase, cellulase, chitinase, pectinesterase and a number of defence/cell death related proteins, but not marker proteins of primary walls such as xyloglucan endotransglycosidase and expansins. Only the corresponding detergent soluble proteome of secretory microsomes from the xylogenic cultured cells, subjected to ion-exchange chromatography, could be determined accurately since, xylem-specific membrane yields were of poor quality from stem tissue. Among the 109 proteins analysed, many of the protein markers of the ER such as BiP, HSP70, calreticulin and calnexin were identified, together with some of the biosynthetic enzymes and associated polypeptides involved in polymer synthesis. However 53% of these endomembrane proteins failed identification despite the use of two different MS methods, leaving considerable possibilities for future identification of novel proteins involved in secondary wall polymer synthesis once full genomic data are available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several tissue types of Lupinus albus L. were investigated as sources for the isolation of protoplasts. Cotyledons from in vitro seedlings were found to yield the highest number of protoplasts compared with leaves, hypocotyls and roots. A combination of the protoplast isolation enzymes, cellulase and Pectolyase Y23, was capable of releasing the highest number of protoplasts compared with a combination of cellulase and Macerase. Protoplast yield increased with increasing cotyledon age but was accompanied by a progressive decline in protoplast viability. The optimal combination of protoplast yield and viability occurred when the protoplasts were isolated from 14- to 18-day-old cotyledons. The ratio between the volume of enzyme solution and the tissue biomass did not affect the protoplast production significantly. This is the first report of the isolation of protoplasts from a lupin cotyledon and, following the procedure described in this paper, an average yield of 1.2 × 106 protoplasts per gram of fresh tissue was obtainable.